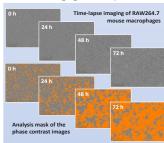
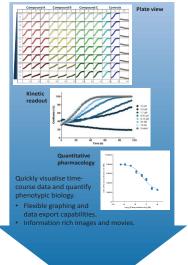

Quantitative Live-Cell Imaging Assays for Immmunotherapy: Chemotaxis, Immune Cell Killing and Phagocytosis

G. Lovell, N. Bevan, C. Szybut, N. Rodinova, D. Appledorn, M. Tikhoneko, L. O'Clair, T. O'Callaghan, T.Dale, and D. Trezise Essen BioScience R&D, Welwyn Garden City, UK and Ann Arbor, MI, USA



Micro-titre Plate Models


- Live cell protocols enable real time measures within your incubator - novel instrumentation, reagents & consumables.
- Simple mix-and-read methods no wash, no fix, no cell lifting.
- Analyse up to 6 plates in the IncuCyte[®] system.

Automated Imaging and Analysis

- Time-lapse images taken from every well and automatically analysed.
- Non-perturbing, non-invasive and direct measures of phenotypic cell biology.
- High definition phase contrast image processing and fluorescence object quantification.

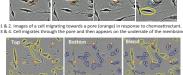
Real Time Quantification

Summary and Impact

- For the body to defend and fight against cancer, immune cells must recognise, engage, destroy and ultimately remove unwanted tumour cells. Understanding
- these processes and interactions at the cellular level is central to identifying and validating new drug targets and cellular therapy approaches.
- Essen BioScience offers a flexible range of phenotypic assays to explore all aspects of the immuno-oncology research area. All of these assays are based on noninvasive live-cell analysis of cells in 96-well micro-plates using an IncuCyte[®] ZOOM live cell analysis system.
- Here we describe a cluster of new assays for quantifying immune cell biology and interactions with tumour cells.

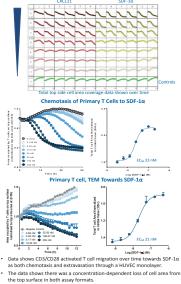
Immune Cell Killing

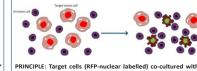
- Phase-contrast/fluorescence images from cells gathered over time are processed to measure phenotypes, such as immune cell proliferation, migration & death.
 Experiments are performed with low cell numbers using simple mix and read formats which are non-perturbing to the cell model.
 - Experiments are performed with low centralities using simple mix and read formats which are non-performing to the centrological model. Each of these approaches provide a full time-course of the biology; images and time-lapse movies provide credibility and valuable biological insight. Added throughput and automated image analysis enhances productivity.



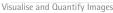
PRINCIPLE: Cells seeded onto the top surface of the IncuCyte™ ClearView membrane insert and migrate towards chemoattractant in the lower reservoir plate.

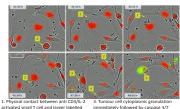

Cell movement monitored over time, imaging every 0.5-2 h. IncuCyte® 200M live cell analysis system images and quantifies the top and bottom surface of the membrane. Cell movement is detected as a loss of cell area from the top surface or an increase in cell area on the bottom surface.


APPLICATIONS: Measure migration, invasion or trans-cellular migration (e.g. TEM) with both adherent and non-adherent cells.

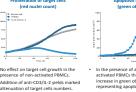

Visualise and Quantify Images

Automated image processing separates cells located on the top surface (yellow) and bottom surface (blue) of the membrane, pores shown (orange). Images are processed ccquisition.

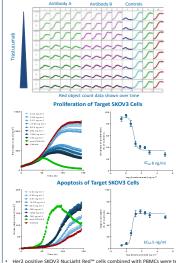




PRINCIPLE: Target cells (KPP-nuclear Tabelled) co-cultured with immune cells (T cells, NK, PBMC), with various activators and the IncuCyte® ZOOM Caspase 3/7 apoptosis reagent (green).


Cells monitored over time, imaging every 2 h. IncuCyte® ZOOM live cell analysis system images and quantifies phase and fluorescence images Target cell number is quantified as the number of red objects (nuclei), apoptosis by counting the green-labelled nuclei.

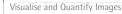
APPLICATIONS: Measure T-cell killing/ADCC in adherent or non adherent target cells.

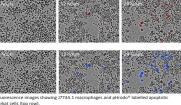


Wated shall i Cell and larger labelled
 minicusery nonwea or cospase or
 VO3 Nuccight Red" cell. T cell division.
 Iumour cells under attack from T cells.
 Proliferation of target cells
 Apoptosis of target cells

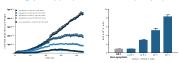
Antibody-Dependent Cell Cytotoxicity

 Her2 positive SKOV3 Nuclight Red[™] cells combined with PBMCs were tested in the presence of Trastuzumab to induce antibody-dependent cell-mediated cytotoxicity (ADCC).
 Concentration_dependent decrease in proliferation and increase in apontosis

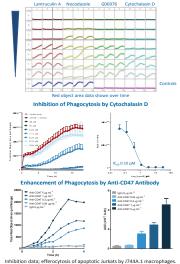

Concentration-dependent decrease in proliferation and increase in apoptosi
 No response was seen in Her2 negative cells (A549; lung carcinoma).



PRINCIPLE: pHrodo[®] labelled cells added to phagocytes (e.g. macrophages), phagocytosis is initiated following receptor activation and pHrodo[®] labelled cells are engulfed.


Cells monitored over time, imaging every 15-30 min. Little or no fluorescence is measured while target cells are in the extracellular environment (pH 7.4). Once in the acidic phagosome (pH 4.5-5.5) there is an increase in pHrodo[®] fluorescence.

APPLICATIONS: Measure phagocytosis, efferocytosis and ADCP of pHrodo® labelled target cells.



jurkat cells (top row). Masking of red fluorescent objects (blue) for analysis and enabling quantification (bottom row). Phagocytosis of anontotic pHrodo[®] labelled lurkat cells (efferocytosis)

 Addition of apoptotic cells to the J744A.1 macrophages results in an increase in fluorescent area as labelled cells transition into the acidic phagosome .
 Amplitude of fluorescent signal is proportional to the number of target cells added.
 The fluorescent signal is minimal with the addition of non-anontotic lurkat cells.

Modulation of Phagocytosis

Inhibition data; efferocytosis of apoptotic Jurkats by J744A.1 macrophages. Enhancement data; phagocytosis of CCRF-CEM cells in the presence of increasing concentrations of anti-CD47 by BMDM. Inclusion of anti-CD47 binds to the "don't eat me" signal on CCRF-CEM to promote phagocytosis by the macrophages.